论文标题
改进椭圆曲线离散对数的量子电路
Improved quantum circuits for elliptic curve discrete logarithms
论文作者
论文摘要
我们提出了用于椭圆曲线标量乘法的改进的量子电路,这是Shor算法中最昂贵的组件,用于计算椭圆曲线组中离散的对数。我们通过窗口技术和更高的自适应位置来优化低级组件,例如可逆整数和模块化算术,并通过重新构造二进制欧几里得算法来改善模块化倒置的先前量子电路。总体而言,我们获得了一个仿射Weierstrass点的加法电路,该电路的深度较低,并且比以前的电路使用的$ T $门更少。虽然先前的工作主要集中于最大程度地减少量子位总数,但我们在不同的成本指标之间进行了各种权衡,包括量子数,电路深度和$ t $ -GATE计数。最后,我们在Q#量子编程语言中提供了添加点的完整实现,该语言允许对所有组件进行单元测试和自动量子资源估计。
We present improved quantum circuits for elliptic curve scalar multiplication, the most costly component in Shor's algorithm to compute discrete logarithms in elliptic curve groups. We optimize low-level components such as reversible integer and modular arithmetic through windowing techniques and more adaptive placement of uncomputing steps, and improve over previous quantum circuits for modular inversion by reformulating the binary Euclidean algorithm. Overall, we obtain an affine Weierstrass point addition circuit that has lower depth and uses fewer $T$ gates than previous circuits. While previous work mostly focuses on minimizing the total number of qubits, we present various trade-offs between different cost metrics including the number of qubits, circuit depth and $T$-gate count. Finally, we provide a full implementation of point addition in the Q# quantum programming language that allows unit tests and automatic quantum resource estimation for all components.