论文标题

CFT在$ d> 2 $中的CFT的病房身份的广义超几何结构

The Generalized Hypergeometric Structure of the Ward Identities of CFT's in Momentum Space in $d > 2$

论文作者

Corianò, Claudio, Maglio, Matteo Maria

论文摘要

我们回顾了在尺寸$ d> 2 $中的保形病房身份(CWIS)中从共形病房身份(CWIS)出现的高几何结构($ f_4 $ appell函数)的出现。我们说明了标量3和4点功能的情况。 3点功能与具有4个独立解决方案的高几何系统有关。对于对称相关器,它们可以通过Momenta的二次比率的单个3K积分 - 函数表示,这是三个修改的Bessel $ K $函数的参数积分。对于标量4点函数,通过要求相关器在坐标空间以及某些双变量(即双重共形不变式)中是保形,它的显式表达也由3K积分给出,或作为Appell函数的线性组合,现在是Appell函数的线性组合,而Appell函数现在是Quartic Baties toMMORMASA的Quartic Baties of MomenTa的Quartic Baties。过去,在扰动理论中计算无限类平面阶梯(Feynman)图的计算中,已经获得了类似的表达式,但是我们的解决方案并不共享相同的(双重顺式/形式)对称性。然后,我们讨论3个变量的一些超几何函数,该变量定义了CWIS的8个特定溶液,并与Lauricella函数相对应。它们也可以通过4K积分组合,并以特殊运动限制的标量4点函数的渐近描述出现。

We review the emergence of hypergeometric structures (of $F_4$ Appell functions) from the conformal Ward identities (CWIs) in conformal field theories (CFTs) in dimensions $d > 2$. We illustrate the case of scalar 3- and 4-point functions. 3-point functions are associated to hypergeometric systems with 4 independent solutions. For symmetric correlators they can be expressed in terms of a single 3K integral - functions of quadratic ratios of momenta - which is a parametric integral of three modified Bessel $K$ functions. In the case of scalar 4-point functions, by requiring the correlator to be conformal invariant in coordinate space as well as in some dual variables (i.e. dual conformal invariant), its explicit expression is also given by a 3K integral, or as a linear combination of Appell functions which are now quartic ratios of momenta. Similar expressions have been obtained in the past in the computation of an infinite class of planar ladder (Feynman) diagrams in perturbation theory, which, however, do not share the same (dual conformal/conformal) symmetry of our solutions. We then discuss some hypergeometric functions of 3 variables, which define 8 particular solutions of the CWIs and correspond to Lauricella functions. They can also be combined in terms of 4K integral and appear in an asymptotic description of the scalar 4-point function, in special kinematical limits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源