论文标题

SECEL:自动驾驶汽车的保护隐私,可验证和耐故障的边缘学习

SecEL: Privacy-Preserving, Verifiable and Fault-Tolerant Edge Learning for Autonomous Vehicles

论文作者

Weng, Jiasi, Weng, Jian, Zhang, Yue, Li, Ming, Wen, Zhaodi

论文摘要

移动边缘计算(MEC)是一种新兴技术,可将基于云的计算服务转换为基于边缘的计算服务。作为MEC最有希望的应用之一,自动驾驶汽车网络(AVNET)可以采用边缘学习和通信技术,从而提高自动驾驶汽车的安全性(AVS)。本文重点介绍了AVNET的边缘学习,其中AV在网络共享模型参数而不是数据的边缘,而不是以分布式的方式进行数据,而聚合器(例如,基站)的聚合参数来自AVS,最终获得了训练有素的模型。尽管有希望,但在现有边缘学习案例中的数据泄漏,计算完整性入侵和故障连接等安全问题尚未完全考虑。据我们所知,缺乏同时涵盖上述安全问题的有效计划。因此,我们提出了\ textit {secel},这是AVNET中边缘学习的一种隐私,可验证且容易耐受性的方案。首先,我们利用基于双重一项的秘密共享的原始性来通过一次性填充来加密模型参数。其次,我们使用基于消息身份验证代码的同构验证符来支持可验证的计算。第三,我们减轻故障连接引起的计算失败问题。最后,我们在时间成本,吞吐量和分类准确性方面模拟和评估SECEL。实验结果证明了SECEL的有效性。

Mobile edge computing (MEC) is an emerging technology to transform the cloud-based computing services into the edge-based ones. Autonomous vehicular network (AVNET), as one of the most promising applications of MEC, can feature edge learning and communication techniques, improving the safety for autonomous vehicles (AVs). This paper focuses on the edge learning in AVNET, where AVs at the edge of the network share model parameters instead of data in a distributed manner, and an aggregator (e.g., a base station) aggregates parameters from AVs and at the end obtains a trained model. Despite promising, security issues, such as data leakage, computing integrity invasion and fault connection in existing edge learning cases are not considered fully. To the best of our knowledge, there lacks an effective scheme simultaneously covering the foregoing security issues. Therefore, we propose \textit{SecEL}, a privacy-preserving, verifiable and fault-tolerant scheme for edge learning in AVNET. First, we leverage the primitive of bivariate polynomial-based secret sharing to encrypt model parameters by one-time padding. Second, we use homomorphic authenticator based on message authentication code to support verifiable computation. Third, we mitigate the computation failure problem caused by fault connection. Last, we simulate and evaluate SecEL in terms of time cost, throughput and classification accuracy. The experiment results demonstrate the effectiveness of SecEL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源