论文标题
J = 1728
Primitive divisors of elliptic divisibility sequences for elliptic curves with j=1728
论文作者
论文摘要
以最小形式的等式$ y^2 = x^3+ax $定义的有理椭圆曲线,并考虑非交通点迭代的分母的序列$ b_n $;我们表明$ b_ {5m} $对于每$ m $都有一个原始除数。然后,我们展示了如何以$ b_ {mp} $的形式将此方法概括为$ p $ a prime的prime,$ 1 $ modulo $ 4 $。
Take a rational elliptic curve defined by the equation $y^2=x^3+ax$ in minimal form and consider the sequence $B_n$ of the denominators of the abscissas of the iterate of a non-torsion point; we show that $B_{5m}$ has a primitive divisor for every $m$. Then, we show how to generalize this method to the terms in the form $B_{mp}$ with $p$ a prime congruent to $1$ modulo $4$.