论文标题

深度学习功能估计器的最佳动力学估计器,用于采样大偏差

A Deep Learning Functional Estimator of Optimal Dynamics for Sampling Large Deviations

论文作者

Oakes, Tom H. E., Moss, Adam, Garrahan, Juan P.

论文摘要

在随机系统中,以数值对相关的轨迹进行数值采样,以估算较大的延伸性观测值的大偏差统计数据,需要克服其指数(在时空和时间)稀缺性。访问这些罕见事件的最佳方法是通过从原始动力学通过所谓的``广义DOOB变换''获得的辅助动力学。尽管保证存在这种最佳动力学,但其使用通常是不切实际的,为了定义它需要对对角线(倾斜)动力学发电机的对角线的不可能的任务。尽管已经设计了近似的方案来克服这个问题,但它们很难自动化,因为他们倾向于需要研究所研究的系统。在这里,我们从深度学习的角度解决了这个问题。我们设计了一种迭代的半监督学习方案,该方案会收敛到最佳或DOOB动力学,具有明显的优势,即不需要对系统的先验知识。我们在具有非平凡动力学波动的范式统计力学模型中测试我们的方法,这是方格上完全包装的经典二聚体模型,表明它与更传统的方法相比。我们讨论了我们的结果对罕见动力轨迹的研究的更广泛含义。

In stochastic systems, numerically sampling the relevant trajectories for the estimation of the large deviation statistics of time-extensive observables requires overcoming their exponential (in space and time) scarcity. The optimal way to access these rare events is by means of an auxiliary dynamics obtained from the original one through the so-called ``generalised Doob transformation''. While this optimal dynamics is guaranteed to exist its use is often impractical, as to define it requires the often impossible task of diagonalising a (tilted) dynamical generator. While approximate schemes have been devised to overcome this issue they are difficult to automate as they tend to require knowledge of the systems under study. Here we address this problem from the perspective of deep learning. We devise an iterative semi-supervised learning scheme which converges to the optimal or Doob dynamics with the clear advantage of requiring no prior knowledge of the system. We test our method in a paradigmatic statistical mechanics model with non-trivial dynamical fluctuations, the fully packed classical dimer model on the square lattice, showing that it compares favourably with more traditional approaches. We discuss broader implications of our results for the study of rare dynamical trajectories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源