论文标题
全面相互作用多体系统的随机热力学
Stochastic thermodynamics of all-to-all interacting many-body systems
论文作者
论文摘要
我们为$ n $相同单元的量表提供了随机的热力学描述,这些单元具有全能的相互作用,这些相互作用被不同的储层和外部力量驱逐出平衡。我们从微观水平开始,泊松率描述了多体状态之间的过渡。然后,我们确定了一个确切的粗网,从而从系统职业之间的泊松过渡方面进行了介绍性描述。我们继续使用Martin-Siggia-Rose形式主义和大偏差理论来研究宏观波动。在宏观极限($ n \ to \ infty $)中,我们得出了描述最可能职业的确定性动态的确切非线性(平均场)速率方程。我们确定了能量和动力学的尺度,以确保在微观,介观和宏观尺度上进行热力学一致性(包括详细的波动定理)。还概述了香农熵(以及随后的随机热力学)在不同尺度上的概念不同的性质。宏观波动是在不平衡的ISING模型中半分析计算的。我们的工作提供了一个强大的框架来研究非平衡相变的热力学。
We provide a stochastic thermodynamic description across scales for $N$ identical units with all-to-all interactions that are driven away from equilibrium by different reservoirs and external forces. We start at the microscopic level with Poisson rates describing transitions between many-body states. We then identify an exact coarse graining leading to a mesoscopic description in terms of Poisson transitions between system occupations. We proceed studying macroscopic fluctuations using the Martin-Siggia-Rose formalism and large deviation theory. In the macroscopic limit ($N \to \infty$), we derive the exact nonlinear (mean-field) rate equation describing the deterministic dynamics of the most likely occupations. We identify the scaling of the energetics and kinetics ensuring thermodynamic consistency (including the detailed fluctuation theorem) across microscopic, mesoscopic and macroscopic scales. The conceptually different nature of the Shannon entropy (and of the ensuing stochastic thermodynamics) at different scales is also outlined. Macroscopic fluctuations are calculated semi-analytically in an out-of-equilibrium Ising model. Our work provides a powerful framework to study thermodynamics of nonequilibrium phase transitions.