论文标题
在线评论中,用户期望随着时间的推移而变化
Mining Changes in User Expectation Over Time From Online Reviews
论文作者
论文摘要
客户随时发布在线评论。通过在线评论的时间戳,它们可以被视为信息流。有了这个特征,设计师可以捕获客户反馈的变化,以帮助建立产品改进策略。在这里,我们提出了一种方法,以根据两代产品的在线评论来捕获用户对产品负担的变化。首先,该方法使用基于规则的自然语言处理方法自动识别和构造产品从审核文本中提供的产品。然后,受到Kano模型的启发,该模型将产品属性的偏好分类为五个类别,联合分析用于定量对结构化提供的负担进行定量分类。最后,可以通过在连续两代产品发布的在线评论上应用联合分析来找到用户期望的变化。基于从Amazon.com下载的Kindle电子阅读器的在线评论的案例研究表明,设计师可以使用我们建议的方法评估其先前产品的产品改进策略,并为未来产品制定新产品改进策略。
Customers post online reviews at any time. With the timestamp of online reviews, they can be regarded as a flow of information. With this characteristic, designers can capture the changes in customer feedback to help set up product improvement strategies. Here we propose an approach for capturing changes of user expectation on product affordances based on the online reviews for two generations of products. First, the approach uses a rule-based natural language processing method to automatically identify and structure product affordances from review text. Then, inspired by the Kano model which classifies preferences of product attributes in five categories, conjoint analysis is used to quantitatively categorize the structured affordances. Finally, changes of user expectation can be found by applying the conjoint analysis on the online reviews posted for two successive generations of products. A case study based on the online reviews of Kindle e-readers downloaded from amazon.com shows that designers can use our proposed approach to evaluate their product improvement strategies for previous products and develop new product improvement strategies for future products.