论文标题
拓扑光子TAMM态和Su-Schrieffer-Heeger模型
Topological Photonic Tamm-States and the Su-Schrieffer-Heeger Model
论文作者
论文摘要
在本文中,我们研究了半无限一维光子晶体和金属之间界面处拓扑tamm态的形成。我们表明,当系统在拓扑上是不平凡的时,每个带隙中都有一个单个TAMM状态,而如果在拓扑上是微不足道的,则频带隙会主持无TAMM状态。我们将TAMM状态的消失与从拓扑非平凡的系统到拓扑琐碎的拓扑过渡联系起来。这种拓扑转换是由晶胞中介电函数的修饰驱动的。通过麦克斯韦方程的解决方案和这些解决方案的紧密结合表示的存在之间的精确映射,我们的解释进一步支持。我们表明,基于麦克斯韦方程的1D光子晶体的紧密结合表示对应于每对频段的su-schrieffer-heeger-type模型(SSH-Model)。扩展了在频段边缘附近的表示形式,我们表明该系统可以由狄拉克(Dirac)的哈密顿量(Hamiltonian)描述。它允许人们通过绕组编号来表征与麦克斯韦方程解决方案相关的拓扑。此外,对于无限系统,我们为可以计算带隙的光子带提供了分析表达式。
In this paper we study the formation of topological Tamm states at the interface between a semi-infinite one-dimensional photonic-crystal and a metal. We show that when the system is topologically non-trivial there is a single Tamm state in each of the band-gaps, whereas if it is topologically trivial the band-gaps host no Tamm states. We connect the disappearance of the Tamm states with a topological transition from a topologically non-trivial system to a topologically trivial one. This topological transition is driven by the modification of the dielectric functions in the unit cell. Our interpretation is further supported by an exact mapping between the solutions of Maxwell's equations and the existence of a tight-binding representation of those solutions. We show that the tight-binding representation of the 1D photonic crystal, based on Maxwell's equations, corresponds to a Su-Schrieffer-Heeger-type model (SSH-model) for each set of pairs of bands. Expanding this representation near the band edge we show that the system can be described by a Dirac-like Hamiltonian. It allows one to characterize the topology associated with the solution of Maxwell's equations via the winding number. In addition, for the infinite system, we provide an analytical expression for the photonic bands from which the band-gaps can be computed.