论文标题

超材料和cesàro融合

Metamaterials and Cesàro convergence

论文作者

Nellambakam, Yuganand, Chaitanya, K. V. S. Shiv

论文摘要

在本文中,我们表明,物质中的线性介电和磁性材料遵守一种特殊的数学特性,称为cesàro融合。然后,我们还表明,在Riemann Zeta函数方面,线性介电常数\&渗透性对复杂平面的分析延续。超材料是具有负折射率的制造材料。这些材料反过来取决于线性介电和磁性材料的介电常数\&渗透性。因此,线性介电和磁性材料的CESàRO收敛性可以用于制造超材料。

In this paper, we show that the linear dielectrics and magnetic materials in matter obey a special kind of mathematical property known as Cesàro convergence. Then, we also show that the analytical continuation of the linear permittivity \& permeability to a complex plane in terms of Riemann zeta function. The metamaterials are fabricated materials with a negative refractive index. These materials, in turn, depend on permittivity \& permeability of the linear dielectrics and magnetic materials. Therefore, the Cesàro convergence property of the linear dielectrics and magnetic materials may be used to fabricate the metamaterials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源