论文标题
矩阵加权理性的bézier曲线转换为理性贝齐尔曲线
Conversion of matrix weighted rational Bézier curves to rational Bézier curves
论文作者
论文摘要
矩阵加权有理Bézier曲线可以使用少量控制点和矩阵权重的清晰几何定义来表示复杂的曲线形状。显式公式被得出以将2D或3D空间中的矩阵加权有理Bézier曲线转换为理性的Bézier曲线。一种计算矩阵加权有理贝齐尔曲线的凸壳的方法作为猜想。
Matrix weighted rational Bézier curves can represent complex curve shapes using small numbers of control points and clear geometric definitions of matrix weights. Explicit formulae are derived to convert matrix weighted rational Bézier curves in 2D or 3D space to rational Bézier curves. A method for computing the convex hulls of matrix weighted rational Bézier curves is given as a conjecture.