论文标题

通过342.78 nm光的钠层I:单光兴激发的激光激发的精确光度比率

A Precise Photometric Ratio via Laser Excitation of the Sodium Layer I: One-photon Excitation Using 342.78 nm Light

论文作者

Albert, J., Budker, D., Chance, K., Gordon, I. E., Bustos, F. Pedreros, Pospelov, M., Rochester, S. M., Sadeghpour, H. R.

论文摘要

使用IA型超新星对暗能量测量的最大不确定性目前是由于光度法的系统。专门针对光度法的相对不确定性作为光谱中波长的函数。我们表明,在即将进行的调查(例如在Vera C. rubin天文台的LSST中,可见的和近红外的相对光度法)通过山顶上位于中性钠钠ATOMS ATOM的中性钠的激发长度调查的相对光度法(例如在Vera C. Rubin天文台的LSST中)实现。使用从激光指南恒星研究中修改的高功率(500 W)激光器,这种激发将产生一个人造恒星(我们称其为“激光光度比恒星”或LPRS的“激光比率星”或LPRS)在中层中的脱尖光,在地面上可观察到的秒数可在大约20级中观察到,在大约20级内(即,在预期的单个图像中均可在5级上进行5次液位。 NM,589.76 nm,818.55 nm和819.70 nm,其数量为589.16 nm和589.76 nm光子的总和等于该过程的总和等于818.55 nm和818.55 nm和819.70 nm Photos的总和,并建立了精确的校准,例如,在lse and ls&z之间,ls和z bebibrs and ls。因此,该技术可以提供一种新的机制,用于从地球上大部分大气中建立前所未有的精度的分光光度计校准率,即即将到来的天文学和大气物理学的望远镜观察。 本文是有关此主题的两篇文章中的第一篇。两人的第二篇文章描述了一种替代技术,该技术比本文中描述的技术相似但更明亮的LPR,该技术通过使用两个山顶的激光器,在离共振的光学频率上,分别在589.16 nm和819.71 nm的真空中,在离共振的光学频率上,距离谐振约4 GHz。

The largest uncertainty on measurements of dark energy using type Ia supernovae is presently due to systematics from photometry; specifically to the relative uncertainty on photometry as a function of wavelength in the optical spectrum. We show that a precise constraint on relative photometry between the visible and near-infrared can be achieved in upcoming surveys (such as in LSST at the Vera C. Rubin Observatory) via a mountaintop-located laser source tuned to the 342.78 nm vacuum excitation wavelength of neutral sodium atoms. Using a high-power (500 W) laser modified from laser guide star studies, this excitation will produce an artificial star (which we term a "laser photometric ratio star," or LPRS) of de-excitation light in the mesosphere that is observable from the ground at approximately 20 magnitude (i.e., well within the expected single-image magnitude limit of LSST) at wavelengths in vacuum of 589.16 nm, 589.76 nm, 818.55 nm, and 819.70 nm, with the sum of the numbers of 589.16 nm and 589.76 nm photons produced by this process equal to the sum of the numbers of 818.55 nm and 819.70 nm photons, establishing a precise calibration ratio between, for example, the LSST r and z filters. This technique can thus provide a novel mechanism for establishing a spectrophotometric calibration ratio of unprecedented precision, from above most of the Earth's atmosphere, for upcoming telescopic observations across astronomy and atmospheric physics. This article is the first in a pair of articles on this topic. The second article of the pair describes an alternative technique to achieve a similar, but brighter, LPRS than the technique described in this paper, by using two mountaintop-located lasers, at optical frequencies approximately 4 GHz away from resonances at wavelengths in vacuum of 589.16 nm and 819.71 nm respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源