论文标题
确定性函数的高斯过程近似的最大似然估计和不确定性定量
Maximum likelihood estimation and uncertainty quantification for Gaussian process approximation of deterministic functions
论文作者
论文摘要
尽管高斯流程回归模型的普遍存在,但很少有理论结果可以说明以下事实:协方差内核的参数通常需要从数据集估算。本文提供了使用无噪声数据集的高斯过程回归背景下的第一个理论分析之一。具体而言,我们考虑了Sobolev内核(例如Matérn内核)的比例参数以最大可能性估算的情况。我们表明,仅比例参数的最大似然估计可为高斯过程模型的错误指定提供显着适应,因为该模型可以在最坏情况下“缓慢地”过度自信,而不管数据生成函数的平滑度与模型的预期之间的差异如何。该分析基于非参数回归和分散数据插值的技术组合。提供经验结果以支持理论发现。
Despite the ubiquity of the Gaussian process regression model, few theoretical results are available that account for the fact that parameters of the covariance kernel typically need to be estimated from the dataset. This article provides one of the first theoretical analyses in the context of Gaussian process regression with a noiseless dataset. Specifically, we consider the scenario where the scale parameter of a Sobolev kernel (such as a Matérn kernel) is estimated by maximum likelihood. We show that the maximum likelihood estimation of the scale parameter alone provides significant adaptation against misspecification of the Gaussian process model in the sense that the model can become "slowly" overconfident at worst, regardless of the difference between the smoothness of the data-generating function and that expected by the model. The analysis is based on a combination of techniques from nonparametric regression and scattered data interpolation. Empirical results are provided in support of the theoretical findings.