论文标题
疫苗接种与疾病扩散之间的竞争
Competition between vaccination and disease spreading
论文作者
论文摘要
我们研究流行病扩散与疫苗接种过程之间的相互作用。我们假设,类似于疾病的扩散,也通过直接接触进行疫苗接种过程,即遵循标准易感感染感受的(SIS)动力学。这两个竞争过程是不对称的,因为相对于易感性的节点可以直接以降低的速度感染疫苗。我们通过分析平均场理论框架中的模型进行分析研究。当疫苗接种对感染几乎没有保护时,两个连续过渡将无疾病的免疫状态与无疫苗的流行状态分开,该状态具有中间混合状态,易感,感染和接种疫苗的个体共存。随着疫苗效率的提高,三临界点会导致可行的状态和不连续的相变出来。均质随机网络的数值模拟与分析预测非常吻合。
We study the interaction between epidemic spreading and a vaccination process. We assume that, similar to the disease spreading, also the vaccination process occurs through direct contact, i.e., it follows the standard susceptible-infected-susceptible (SIS) dynamics. The two competing processes are asymmetrically coupled as vaccinated nodes can directly become infected at a reduced rate with respect to susceptible ones. We study analytically the model in the framework of mean-field theory finding a rich phase-diagram. When vaccination provides little protection toward infection, two continuous transitions separate a disease-free immunized state from vaccinated-free epidemic state, with an intermediate mixed state where susceptible, infected and vaccinated individuals coexist. As vaccine efficiency increases, a tricritical point leads to a bistable regime and discontinuous phase transitions emerge. Numerical simulations for homogeneous random networks agree very well with analytical predictions.