论文标题
标量V-soliton方程和kähler-icci流在符号符号商方面
Scalar V-soliton equation and Kähler-Ricci flow on symplectic quotients
论文作者
论文摘要
在本文中,我们考虑了$ v $ -Soliton方程,该方程是La Nave和Tian在Kähler-Ricci流有关Simbletectic Steters的工作中引入的完全非线性方程式。人们可以将解释应用于Kähler-Ricci流的有限时间奇点。与Kähler-Einstein指标一样,我们还可以将$ v $ -soliton方程减少到Kähler电位的标量方程,该方程是Monge-Ampères类型的标量。我们在紧凑的Kähler歧管$ M $上为这种标量方程式制定了一些初步估计。
In this paper, we consider the $V$-soliton equation which is a degenerate fully nonlinear equation introduced by La Nave and Tian in their work on Kähler-Ricci flow on symplectic quotients. One can apply the interpretation to study finite time singularities of the Kähler-Ricci flow. As in the case of Kähler-Einstein metrics, we can also reduce the $V$-soliton equation to a scalar equation on Kähler potentials, which is of Monge-Ampère type. We formulate some preliminary estimates for such a scalar equation on a compact Kähler manifold $M$.