论文标题
来自静态和动态图的共享记忆并行最大集团
Shared-Memory Parallel Maximal Clique Enumeration from Static and Dynamic Graphs
论文作者
论文摘要
最大集团枚举(MCE)是一个基本的图挖掘问题,可作为原始识别图中的密集结构的原始性。由于MCE的计算成本高,因此需要使用并行方法处理大图。我们介绍MCE的共享记忆并行算法,具有以下属性:(1)相对于最新的顺序算法(2),相对于最新的顺序算法(2),平行算法可证明是工作效率的,该算法可证明具有较小的并行深度,显示出大量和(3)的量表,并显示出良好的量级和(3)量表,并且(3)量表的量表,以及(3)量表,并(3)量表,(3)量表的量表,以及(3)量表,(3)量表,(3)范围的量表,以及(3)量表,并(3)量表的量表,以及(3)量表。 MCE的先前共享内存并行算法的速度要快得多;例如,在某些输入图上,虽然先前的作品要么用完存储器,要么在5小时内完成,但我们的实现在一分钟内使用32个内核完成。我们还提出了工作效率平行算法,用于在动态图中维护所有最大集团的集合,该算法正在通过添加边缘变化。
Maximal Clique Enumeration (MCE) is a fundamental graph mining problem, and is useful as a primitive in identifying dense structures in a graph. Due to the high computational cost of MCE, parallel methods are imperative for dealing with large graphs. We present shared-memory parallel algorithms for MCE, with the following properties: (1) the parallel algorithms are provably work-efficient relative to a state-of-the-art sequential algorithm (2) the algorithms have a provably small parallel depth, showing they can scale to a large number of processors, and (3) our implementations on a multicore machine show good speedup and scaling behavior with increasing number of cores, and are substantially faster than prior shared-memory parallel algorithms for MCE; for instance, on certain input graphs, while prior works either ran out of memory or did not complete in 5 hours, our implementation finished within a minute using 32 cores. We also present work-efficient parallel algorithms for maintaining the set of all maximal cliques in a dynamic graph that is changing through the addition of edges.