论文标题
Strips动作发现
STRIPS Action Discovery
论文作者
论文摘要
在现实环境中,指定规划高级知识基础的问题成为一项艰巨的任务。这些知识通常是手工制作的,即使对于系统专家,也很难保持更新。最近的方法表明,即使缺少所有中级状态,经典计划在综合行动模型中的成功。这些方法可以从计划域定义语言(PDDL)中合成一组执行跟踪的操作模式,至少每种执行跟踪是初始和最终状态的。在本文中,当动作特征未知时,我们提出了一种新算法,以不可开展的综合条款模型与经典规划师。此外,我们还为经典计划做出了贡献,该计划减轻了在动作模型前提中学习静态谓词谓词的问题,利用具有并行编码的SAT计划者的能力来计算动作方案并验证所有实例。我们的系统很灵活,因为它支持包含可能加快搜索速度的部分输入信息。我们通过几个实验展示了学到的动作模型如何推广到看不见的计划实例。
The problem of specifying high-level knowledge bases for planning becomes a hard task in realistic environments. This knowledge is usually handcrafted and is hard to keep updated, even for system experts. Recent approaches have shown the success of classical planning at synthesizing action models even when all intermediate states are missing. These approaches can synthesize action schemas in Planning Domain Definition Language (PDDL) from a set of execution traces each consisting, at least, of an initial and final state. In this paper, we propose a new algorithm to unsupervisedly synthesize STRIPS action models with a classical planner when action signatures are unknown. In addition, we contribute with a compilation to classical planning that mitigates the problem of learning static predicates in the action model preconditions, exploits the capabilities of SAT planners with parallel encodings to compute action schemas and validate all instances. Our system is flexible in that it supports the inclusion of partial input information that may speed up the search. We show through several experiments how learned action models generalize over unseen planning instances.