论文标题
通过可解释的图形卷积网络指导级联故障搜索
Guiding Cascading Failure Search with Interpretable Graph Convolutional Network
论文作者
论文摘要
由于网络互连的增加和更高的可再生能量渗透率,电力系统级联故障变得更加时间和复杂。高计算成本是更频繁地在线级联故障搜索的主要障碍,这对于提高系统安全至关重要。在这项工作中,我们表明,可以通过离线训练图形卷积网络(GCN)来很好地捕获级联故障的复杂机制。随后,借助训练有素的GCN模型可以显着加速级联故障的搜索。我们将功率网络拓扑与GCN的结构联系起来,从而产生较小的参数空间来学习复杂的机制。我们进一步通过层次相关性传播(LRP)算法来启用GCN模型的解释性。提出的方法在IEEE RTS-79测试系统和中国河南省电力系统上进行了测试。结果表明,GCN引导的方法不仅可以加速搜索级联故障的搜索,而且还揭示了预测潜在级联故障的原因。
Power system cascading failures become more time variant and complex because of the increasing network interconnection and higher renewable energy penetration. High computational cost is the main obstacle for a more frequent online cascading failure search, which is essential to improve system security. In this work, we show that the complex mechanism of cascading failures can be well captured by training a graph convolutional network (GCN) offline. Subsequently, the search of cascading failures can be significantly accelerated with the aid of the trained GCN model. We link the power network topology with the structure of the GCN, yielding a smaller parameter space to learn the complex mechanism. We further enable the interpretability of the GCN model by a layer-wise relevance propagation (LRP) algorithm. The proposed method is tested on both the IEEE RTS-79 test system and China's Henan Province power system. The results show that the GCN guided method can not only accelerate the search of cascading failures, but also reveal the reasons for predicting the potential cascading failures.