论文标题
使用生成RNN和Monte Carlo Tree搜索在动态环境中的路径规划
Path Planning in Dynamic Environments using Generative RNNs and Monte Carlo Tree Search
论文作者
论文摘要
在人群或交通等动态环境中,机器人路径计划的最新方法依赖于代理的手工制作的运动模型。这些模型通常不会反映在现实世界中代理的相互作用。为了克服这一限制,本文提出了使用蒙特卡洛树搜索(MCT)中的生成复发神经网络的集成路径计划框架。这种方法使用学习的社会反应模型来预测整个动作领域的计划期间人群动态。这扩展了我们最近使用生成的RNN的工作,以了解计划的机器人动作与人群的可能反应之间的关系。我们表明,所提出的框架可以大大提高互动过程中的运动预测准确性,从而实现更有效的路径计划。在模拟中比较了我们方法的性能,并在一群行人中使用现有的避免碰撞的方法,证明了控制附近个人未来状态的能力。我们还进行初步现实世界测试以验证我们方法的有效性。
State of the art methods for robotic path planning in dynamic environments, such as crowds or traffic, rely on hand crafted motion models for agents. These models often do not reflect interactions of agents in real world scenarios. To overcome this limitation, this paper proposes an integrated path planning framework using generative Recurrent Neural Networks within a Monte Carlo Tree Search (MCTS). This approach uses a learnt model of social response to predict crowd dynamics during planning across the action space. This extends our recent work using generative RNNs to learn the relationship between planned robotic actions and the likely response of a crowd. We show that the proposed framework can considerably improve motion prediction accuracy during interactions, allowing more effective path planning. The performance of our method is compared in simulation with existing methods for collision avoidance in a crowd of pedestrians, demonstrating the ability to control future states of nearby individuals. We also conduct preliminary real world tests to validate the effectiveness of our method.