论文标题
在产品歧管$ m^{n} \ times \ mathbb {r} $中,使用非零neumann边界数据的常数平均曲率方程的解决方案的存在和唯一性
Existence and uniqueness of solutions to the constant mean curvature equation with nonzero Neumann boundary data in product manifold $M^{n}\times\mathbb{R}$
论文作者
论文摘要
在本文中,我们可以证明对恒定平均曲率(简短)方程的解决方案的存在和独特性,在产品歧管$ m^{n} \ times \ times \ mathbb {r} $中,neumann noumann边界数据的存在和独特性曲率和$ \ mathbb {r} $是欧几里得$ 1 $ - 空间。同等地,该结论给出了在紧凑的严格凸域$ω\ subset m^{n} $上定义的CMC图形高度曲面的存在,并具有任意接触角。
In this paper, we can prove the existence and uniqueness of solutions to the constant mean curvature (CMC for short) equation with nonzero Neumann boundary data in product manifold $M^{n}\times\mathbb{R}$, where $M^{n}$ is an $n$-dimensional ($n\geq2$) complete Riemannian manifold with nonnegative Ricci curvature, and $\mathbb{R}$ is the Euclidean $1$-space. Equivalently, this conclusion gives the existence of CMC graphic hypersurfaces defined over a compact strictly convex domain $Ω\subset M^{n}$ and having arbitrary contact angle.