论文标题
面包板 - 贝贝尔 - 霍斯多夫公式用于排列的对数
A Baker-Campbell-Hausdorff formula for the logarithm of permutations
论文作者
论文摘要
研究了四个旋转的链条,研究了经典伊斯林旋转的动力学。我们获得了汉密尔顿操作员,该操作员等同于编码假定的成对交换相互作用的单位置换矩阵。它显示了如何通过确切的终止面包板 - 贝克 - 霍斯多夫公式来概括这一点,该公式将哈密顿量与凸起的两型旋转交换排列的产物相关联。我们简要评论了本研究的身体动机和含义。
The dynamics-from-permutations of classical Ising spins is studied for a chain of four spins. We obtain the Hamiltonian operator which is equivalent to the unitary permutation matrix that encodes assumed pairwise exchange interactions. It is shown how this can be summarized by an exact terminating Baker-Campbell-Hausdorff formula, which relates the Hamiltonian to a product of exponentiated two-spin exchange permutations. We briefly comment upon physical motivation and implications of this study.