论文标题
部分可观测时空混沌系统的无模型预测
Gravitating superconducting solitons in the (3+1)-dimensional Einstein gauged non-linear sigma-model
论文作者
论文摘要
在本文中,我们构建了第一个分析示例(3+1) - 维自生长的常规宇宙管溶液,这些宇宙管溶液具有超导,没有曲率奇异性,并且在Einstein-Su(2)非线性sigma模型中具有非平凡的拓扑电荷。这些引诱拓扑孤子在距轴的距离很大距离上看起来像是(增强的)宇宙弦,具有由理论的参数给出的角度缺陷,在轴附近,可以选择溶液的参数,以便公制是奇异性的,并且无角缺陷。曲率集中在轴周围的管上。这些解决方案类似于Cohen-Kaplan全球弦,但到处都是常规的,非线性的Sigma模型以类似的方式使引力全局弦定于与非亚伯利亚田地相似的方式,使Dirac Monopole正规化。同样,这些溶液可以促进到完全耦合的爱因斯坦 - 马克斯韦尔非线性sigma模型的溶液中,其中非线性Sigma模型在最小耦合到U(1)仪表场和一般相关性。分析表明,即使在U(1)场消失时,这些解决方案即使具有持久电流,它们也会表现为超导体。这种持续的电流不能连续变形至零,因为它与解决方案本身的拓扑充电相关。不久将讨论这些引力孤子的重力镜头的特征。
In this paper, we construct the first analytic examples of (3+1)-dimensional self-gravitating regular cosmic tube solutions which are superconducting, free of curvature singularities and with non-trivial topological charge in the Einstein-SU(2) non-linear sigma-model. These gravitating topological solitons at a large distance from the axis look like a (boosted) cosmic string with an angular defect given by the parameters of the theory, and near the axis, the parameters of the solutions can be chosen so that the metric is singularity free and without angular defect. The curvature is concentrated on a tube around the axis. These solutions are similar to the Cohen-Kaplan global string but regular everywhere, and the non-linear sigma-model regularizes the gravitating global string in a similar way as a non-Abelian field regularizes the Dirac monopole. Also, these solutions can be promoted to those of the fully coupled Einstein-Maxwell non-linear sigma-model in which the non-linear sigma-model is minimally coupled both to the U(1) gauge field and to General Relativity. The analysis shows that these solutions behave as superconductors as they carry a persistent current even when the U(1) field vanishes. Such persistent current cannot be continuously deformed to zero as it is tied to the topological charge of the solutions themselves. The peculiar features of the gravitational lensing of these gravitating solitons are shortly discussed.