论文标题
舒伯特多项式类似物的退化互动
Schubert polynomial analogues for degenerate involutions
论文作者
论文摘要
我们调查了施伯特多项式的最新研究和我们称之为堕落的互惠术多项式的适度概括。当(退化)涉及舒伯特多项式具有简单分解公式时,我们引用了几个条件。可以通过在某些弱顺序上通过链条横穿链条来计算此类多项式,并且我们以薄弱的顺序对此类链条进行明确描述,以进行参与和退化。作为应用程序,我们提供了几个示例,说明了如何将舒伯特多项式的某些无多重性总和完全分解为非常简单的线性因子。
We survey the recent study of involution Schubert polynomials and a modest generalization that we call degenerate involution Schubert polynomials. We cite several conditions when (degenerate) involution Schubert polynomials have simple factorization formulae. Such polynomials can be computed by traversing through chains in certain weak order posets, and we provide explicit descriptions of such chains in weak order for involutions and degenerate involutions. As an application, we give several examples of how certain multiplicity-free sums of Schubert polynomials factor completely into very simple linear factors.