论文标题

普遍的鱼潮的数字和圆环结

Generalized Fishburn numbers and torus knots

论文作者

Bijaoui, Colin, Boden, Hans U., Myers, Beckham, Osburn, Robert, Rushworth, William, Tronsgard, Aaron, Zhou, Shaoyang

论文摘要

安德鲁斯和卖家最近启动了Fishburn数字的算术特性的研究。在本文中,我们证明了Prime Power的一致性。这些数字是Kontsevich-Zagier系列$ \ Mathscr {f} _ {t}(q)$的$ 1-Q $扩展系数的系数。证明使用了Ahlgren,Kim和Lovejoy的强大可分裂性结果,以及用于$ \ Mathscr {f} _ {t}(q)$的新的“奇怪身份”。

Andrews and Sellers recently initiated the study of arithmetic properties of Fishburn numbers. In this paper, we prove prime power congruences for generalized Fishburn numbers. These numbers are the coefficients in the $1-q$ expansion of the Kontsevich-Zagier series $\mathscr{F}_{t}(q)$ for the torus knots $T(3,2^t)$, $t \geq 2$. The proof uses a strong divisibility result of Ahlgren, Kim and Lovejoy and a new "strange identity" for $\mathscr{F}_{t}(q)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源