论文标题
成分系数的计算复杂性
The Computational Complexity of Plethysm Coefficients
论文作者
论文摘要
在两篇论文中,Bürgisserand Ikenmeyer(Stoc 2011,Stoc 2013)使用Mulmuley和Sohoni(Siam J Comput 2001,2008)的几何复杂性理论(GCT)方法的改编,证明了矩阵乘法量张量的边界等级的较低界限。一个关键成分是有关某些Kronecker系数的信息。尽管张量是GCT想法的有趣的测试床,但遥远的目标是代数复杂性类别的分离。 Kronecker系数在该设置中的作用是由所谓的Plethysm系数赋予的:这些是多项式空间坐标环中的多重性。即使已知Kronecker系数的几个硬度结果,但几乎没有计算复杂系数甚至决定其阳性的复杂性的结果。 在本文中,我们表明,确定多数系数的阳性是NP- hard,并且计算多个系数是#p-hard。实际上,即使固定了整数系数的内部参数,这两个问题仍然困难。通过这种方式,我们获得了内部对比度与外部对比:如果固定了整数系数的外部参数,则可以在多项式时间内计算出多元素系数。 此外,我们得出了新的下层和上限,甚至在特殊情况下,甚至针对多包系数的组合描述,我们认为这是独立的。我们的技术以ikenmeyer,Mulmuley和Walter的Kronecker系数的最新作品更精致的方式使用离散的层析成像(Comput Comply 2017)。这使我们的工作是第一个将技术从离散层析成像应用到整数系数研究的技术。令人惊讶的是,这种解释还导致了某些多数系数和kronecker系数之间的新相等。
In two papers, Bürgisser and Ikenmeyer (STOC 2011, STOC 2013) used an adaption of the geometric complexity theory (GCT) approach by Mulmuley and Sohoni (Siam J Comput 2001, 2008) to prove lower bounds on the border rank of the matrix multiplication tensor. A key ingredient was information about certain Kronecker coefficients. While tensors are an interesting test bed for GCT ideas, the far-away goal is the separation of algebraic complexity classes. The role of the Kronecker coefficients in that setting is taken by the so-called plethysm coefficients: These are the multiplicities in the coordinate rings of spaces of polynomials. Even though several hardness results for Kronecker coefficients are known, there are almost no results about the complexity of computing the plethysm coefficients or even deciding their positivity. In this paper we show that deciding positivity of plethysm coefficients is NP-hard, and that computing plethysm coefficients is #P-hard. In fact, both problems remain hard even if the inner parameter of the plethysm coefficient is fixed. In this way we obtain an inner versus outer contrast: If the outer parameter of the plethysm coefficient is fixed, then the plethysm coefficient can be computed in polynomial time. Moreover, we derive new lower and upper bounds and in special cases even combinatorial descriptions for plethysm coefficients, which we consider to be of independent interest. Our technique uses discrete tomography in a more refined way than the recent work on Kronecker coefficients by Ikenmeyer, Mulmuley, and Walter (Comput Compl 2017). This makes our work the first to apply techniques from discrete tomography to the study of plethysm coefficients. Quite surprisingly, that interpretation also leads to new equalities between certain plethysm coefficients and Kronecker coefficients.