论文标题

层次波方程永远无法观察到

Subelliptic wave equations are never observable

论文作者

Letrouit, Cyril

论文摘要

众所周知,椭圆波方程的可观察性(并通过二元性,可控性),即带有riemannian laplacian,随着时间的推移,$ t_0 $几乎等同于几何控制条件(GCC),该条件(GCC)规定,任何地球射线都符合时间内的控制时间$ t_0 $ t_0 $ $ t_0 $。我们表明,在下层次设置中,GCC从未得到验证,并且在有限的时间内永远无法观察到下去的波动方程。更准确地说,给定任何亚段落拉普拉斯$δ= - \ sum_ {i = 1}^m x_i^*x_i^*x_i $在歧管上$ m $上,以及任何可测量的子集$ω\ subset m $,使得$ m \ m \backslashΩ$在其内部$ q $中包含$ q $, \ text {span}(x_1,\ ldots,x_m)$对于某些$ 1 \ leq i,j \ leq m $,我们表明,对于任何$ t_0> 0 $,带有subelliptic laplacian $δ$的波动方程在$ p_0 $ t_0 $上都无法观察到$ω$。该证明是基于集中在大地测量学上的波方程序列的构建(对于相关的亚riemannian距离),将很长一段时间用于$ m \ backslashω$。作为同行,我们证明了海森堡组的波动方程可观察性的积极结果,在海森堡组中,观察集是相位空间的精心选择的一部分。

It is well-known that observability (and, by duality, controllability) of the elliptic wave equation, i.e., with a Riemannian Laplacian, in time $T_0$ is almost equivalent to the Geometric Control Condition (GCC), which stipulates that any geodesic ray meets the control set within time $T_0$. We show that in the subelliptic setting, GCC is never verified, and that subelliptic wave equations are never observable in finite time. More precisely, given any subelliptic Laplacian $Δ=-\sum_{i=1}^m X_i^*X_i$ on a manifold $M$, and any measurable subset $ω\subset M$ such that $M\backslash ω$ contains in its interior a point $q$ with $[X_i,X_j](q)\notin \text{Span}(X_1,\ldots,X_m)$ for some $1\leq i,j\leq m$, we show that for any $T_0>0$, the wave equation with subelliptic Laplacian $Δ$ is not observable on $ω$ in time $T_0$. The proof is based on the construction of sequences of solutions of the wave equation concentrating on geodesics (for the associated sub-Riemannian distance) spending a long time in $M\backslash ω$. As a counterpart, we prove a positive result of observability for the wave equation in the Heisenberg group, where the observation set is a well-chosen part of the phase space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源