论文标题

通过卷积小组的稀疏层共享隐私图像共享

Privacy-Preserving Image Sharing via Sparsifying Layers on Convolutional Groups

论文作者

Ferdowsi, Sohrab, Razeghi, Behrooz, Holotyak, Taras, Calmon, Flavio P., Voloshynovskiy, Slava

论文摘要

我们提出了一个实用框架,以解决大型设置中的隐私感知图像共享问题。我们认为,虽然始终需要大规模的紧凑性,但在试图保护对隐私敏感的内容时,这种需求更加严重。因此,我们对图像进行编码,从一方面,表示形式存储在公共领域,而无需支付巨大的隐私保护成本,但是含糊不清,因此没有图像中的可辨别内容,除非攻击者可以使用组合廉价的猜测机制。另一方面,为授权用户提供了非常紧凑的密钥,可以轻松确保安全。这可以用来消除歧义和忠实地重建相应的访问图像。我们通过设计的卷积自动编码器实现了这一目标,在该卷积自动编码器中,特征图通过稀疏转换独立传递,提供多个紧凑型代码,每个代码都负责重建图像的不同属性。该框架在具有公共实现的大型图像数据库上进行了测试。

We propose a practical framework to address the problem of privacy-aware image sharing in large-scale setups. We argue that, while compactness is always desired at scale, this need is more severe when trying to furthermore protect the privacy-sensitive content. We therefore encode images, such that, from one hand, representations are stored in the public domain without paying the huge cost of privacy protection, but ambiguated and hence leaking no discernible content from the images, unless a combinatorially-expensive guessing mechanism is available for the attacker. From the other hand, authorized users are provided with very compact keys that can easily be kept secure. This can be used to disambiguate and reconstruct faithfully the corresponding access-granted images. We achieve this with a convolutional autoencoder of our design, where feature maps are passed independently through sparsifying transformations, providing multiple compact codes, each responsible for reconstructing different attributes of the image. The framework is tested on a large-scale database of images with public implementation available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源