论文标题
Ligo的光和千克质量镜之间的量子相关性
Quantum correlations between the light and kilogram-mass mirrors of LIGO
论文作者
论文摘要
量子力学支柱施加的极限遇到的微小力和位移的测量值:海森伯格不确定性原理。可以连续测量对象位置的精度的限制,称为标准量子限制(SQL)。当将光用作探针时,SQL是由施加在物体上的光子辐射压力的不确定性与光电检测中光子数之间的平衡产生的。超过SQL的唯一可能性是通过对象的位置/动量不确定性和光子数/相位不确定性的相关性。在这里,我们在实验上证明了这样的理论预测,即这种类型的量子相关是在激光干涉仪重力波观测站(Ligo)中自然产生的。我们的测量结果表明,在200 kW激光束的阶段以及晚期LIGO探测器的40 kg镜子的位置中的量子机械不确定性产生了关节量子不确定性,低于SQL以下1.4(3db)。我们预计,量子相关性不仅会改善重力波(GW)观测值,而且将来所有类型的测量值都将改善重力波(GW)。
Measurement of minuscule forces and displacements with ever greater precision encounters a limit imposed by a pillar of quantum mechanics: the Heisenberg uncertainty principle. A limit to the precision with which the position of an object can be measured continuously is known as the standard quantum limit (SQL). When light is used as the probe, the SQL arises from the balance between the uncertainties of photon radiation pressure imposed on the object and of the photon number in the photoelectric detection. The only possibility surpassing the SQL is via correlations within the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light it reflects. Here, we experimentally prove the theoretical prediction that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). Our measurements show that the quantum mechanical uncertainties in the phases of the 200 kW laser beams and in the positions of the 40 kg mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty a factor of 1.4 (3dB) below the SQL. We anticipate that quantum correlations will not only improve gravitational wave (GW) observatories but all types of measurements in future.