论文标题

反对偶对的操作员:广义的Schur补充

Operators on anti-dual pairs: Generalized Schur complement

论文作者

Tarcsay, Zsigmond, Titkos, Tamás

论文摘要

本文的目的是在作用于反对偶对的操作员的背景下发展Schur互补理论。作为副产品,我们获得了平行总和和平行差的自然概括,以及lebesgue型分解。为了说明该运算符方法在应用程序中的工作方式,我们为作用于索具的希尔伯特空间的运算符以及$ {}^{*} $ -Elgebras的代表性函数得出相应的结果。

The goal of this paper is to develop the theory of Schur complementation in the context of operators acting on anti-dual pairs. As a byproduct, we obtain a natural generalization of the parallel sum and parallel difference, as well as the Lebesgue-type decomposition. To demonstrate how this operator approach works in application, we derive the corresponding results for operators acting on rigged Hilbert spaces, and for representable functionals of ${}^{*}$-algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源