论文标题

量子诱导的量子点点腔中的dephasing QED:极性主方程的局限性

Phonon-induced dephasing in quantum dot-cavity QED: Limitations of the polaron master equation

论文作者

Morreau, A., Joshi, C., Muljarov, E. A.

论文摘要

光学微腔内嵌入的半导体量子点(QD)是量子信息处理中至关重要的系统。在这种应用中,量子相干性的优化至关重要,需要深入了解相关的退积机制。我们在此提供了对QD-cavity系统的普遍理论处理的批判性综述,该系统与纵向声音子相连,将预测与最近获得的精确解决方案进行了比较。在这篇评论中,我们考虑了一系列温度和激子腔耦合强度。对基于Trotter的分解(TD)theorem进行比较,对北极星Nakajima-Zwanzig(NZ)(NZ)(NZ)(NZ)(NZ)和时间跨度(TCL)主方程以及对绝热连续波激发(CWE)的变化进行了比较。 NZ和TCL实施将极化子转化应用于哈密顿量,随后将激子腔耦合处理为二阶,相对于仅相对于极性转化,并未提供显着的提高精度。 CWE的适应性提供了明显的改进,从而捕获了吸收光谱的宽带特征(NZ和TCL实现中不存在)。我们将这种差异归因于马尔可夫近似的效果,尤其是在脉冲激发方案中其不适合性。然而,即使是CWE的改编,也会在高温($ 50K $)和强烈的激情型耦合($ g \ gtrsim 0.2 $ MEV)中分解。 TD解决方案与上述主方程方法具有可比的计算复杂性,但在较高的温度和广泛的激子腔耦合强度(至少高达$ g = 1.5 $ MEV)下仍保持准确。

A semiconductor quantum dot (QD) embedded within an optical microcavity is a system of fundamental importance within quantum information processing. The optimization of quantum coherence is crucial in such applications, requiring an in-depth understanding of the relevant decoherence mechanisms. We provide herein a critical review of prevalent theoretical treatments of the QD-cavity system coupled to longitudinal acoustic phonons, comparing predictions against a recently obtained exact solution. Within this review we consider a range of temperatures and exciton-cavity coupling strengths. Predictions of the polaron Nakajima-Zwanzig (NZ) and time-convolutionless (TCL) master equations, as well as a variation of the former adapted for adiabatic continuous wave excitation (CWE), are compared against an asymptotically exact solution based upon Trotter's decomposition (TD) theorem. The NZ and TCL implementations, which apply a polaron transformation to the Hamiltonian and subsequently treat the exciton-cavity coupling to second order, do not offer a significant improvement accuracy relative to the polaron transformation alone. The CWE adaptation provides a marked improvement, capturing the broadband features of the absorption spectrum (not present in NZ and TCL implementations). We attribute this difference to the effect of the Markov approximation, and particularly its unsuitability in pulsed excitation regime. Even the CWE adaptation, however, breaks down in the regime of high temperature ($50K$) and strong exciton-cavity coupling ($g \gtrsim 0.2$ meV). The TD solution is of comparable computational complexity to the above-mentioned master equation approaches, yet remains accurate at higher temperatures and across a broad range of exciton-cavity coupling strengths (at least up to $g=1.5$ meV).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源