论文标题

$ L_2(\ Mathbb {r}^d)$的定期抛物线系统的均质化,并考虑了校正器

Homogenization of periodic parabolic systems in the $L_2(\mathbb{R}^d)$-norm with the corrector taken into account

论文作者

Meshkova, Yu. M.

论文摘要

在$ l_2(\ Mathbb {r}^d; \ Mathbb {C}^n)$中,考虑一个自动化矩阵第二阶零件椭圆形差异操作员$ \ MATHCAL {B} _ \ VAREPSILON $,$ 0 <\ VAREPSILON \ vARepsilon \ leqslant 1 $。操作员的主要部分以分解形式给出,操作员包含第一和零订单项。运算符$ \ Mathcal {B} _ \ Varepsilon $是正定的,其系数是周期性的,并且取决于$ \ Mathbf {x}/\ Varepsilon $。我们研究了操作员指数$ e^{ - \ Mathcal {b} _ \ Varepsilon T} $,$ t \ geqslant 0 $的少量行为。获得$(l_2 \ rightarrow l_2)$ - 运算符的近似值,并获得了订单$ o(\ varepsilon ^2)$的错误估算。在此近似值中考虑了校正器。该结果应用于抛物线系统库奇问题的溶液的均质化。

In $L_2(\mathbb{R}^d;\mathbb{C}^n)$, consider a self-adjoint matrix second order elliptic differential operator $\mathcal{B}_\varepsilon$, $0<\varepsilon \leqslant 1$. The principal part of the operator is given in a factorised form, the operator contains first and zero order terms. The operator $\mathcal{B}_\varepsilon$ is positive definite, its coefficients are periodic and depend on $\mathbf{x}/\varepsilon$. We study the behaviour in the small period limit of the operator exponential $e^{-\mathcal{B}_\varepsilon t}$, $t\geqslant 0$. The approximation in the $(L_2\rightarrow L_2)$-operator norm with error estimate of order $O(\varepsilon ^2)$ is obtained. The corrector is taken into account in this approximation. The results are applied to homogenization of the solutions for the Cauchy problem for parabolic systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源