论文标题

爱因斯坦和爱因斯坦 - 加斯 - 邦网的薄壳虫洞重力理论

Thin-shell wormholes in Einstein and Einstein-Gauss-Bonnet theories of gravity

论文作者

Kokubu, Takafumi, Harada, Tomohiro

论文摘要

我们回顾了有关爱因斯坦和爱因斯坦 - 加斯 - 邦纳特重力上永恒存在的可能性的最新著作。我们引入了薄壳虫洞,这些虫洞被分为一类可穿越的虫洞溶液。之后,我们讨论了稳定的薄壳蠕虫,并在Reissner-Nordström-(anti)de Sitter SpaceTimes中使用$ d $ d $ dimensional Einstein Gravity中的平台。施加$ z_2 $对称性,我们在球形,平面和双曲线对称性中构建和分类了可穿越的静态薄壳蠕虫。发现球形蠕虫在球形对称的扰动上是稳定的。还发现,平面和双曲线对称性中的某些类别的虫洞具有负宇宙常数的,对于保留对称性的扰动稳定。在大多数情况下,通过电荷和负宇宙常数的适当组合发现稳定的虫洞。然而,作为特殊情况,即使球形对称性的宇宙常数消失,并且在双曲线对称性中也消失了电荷。随后,在爱因斯坦 - 加斯 - 鲍尼特的重力理论中讨论了具有电气中性负张力麸皮的可穿越薄壳虫洞的存在和动力稳定性。我们考虑针对具有$ z_2 $对称性的解决方案的壳扰动。高斯 - 骨网项对稳定性的影响取决于时空对称性。

We review recent works on the possibility for eternal existence of thin-shell wormholes on Einstein and Einstein-Gauss-Bonnet gravity. We introduce thin-shell wormholes that are categorized into a class of traversable wormhole solutions. After that, we discuss stable thin-shell wormholes with negative-tension branes in Reissner-Nordström-(anti) de Sitter spacetimes in $d$ dimensional Einstein gravity. Imposing $Z_2$ symmetry, we construct and classify traversable static thin-shell wormholes in spherical, planar and hyperbolic symmetries. It is found that the spherical wormholes are stable against spherically symmetric perturbations. It is also found that some classes of wormholes in planar and hyperbolic symmetries with a negative cosmological constant are stable against perturbations preserving symmetries. In most cases, stable wormholes are found with the appropriate combination of an electric charge and a negative cosmological constant. However, as special cases, there are stable wormholes even with a vanishing cosmological constant in spherical symmetry and with a vanishing electric charge in hyperbolic symmetry. Subsequently, the existence and dynamical stability of traversable thin-shell wormholes with electrically neutral negative-tension branes is discussed in Einstein-Gauss-Bonnet theory of gravitation. We consider radial perturbations against the shell for the solutions, which have the $Z_2$ symmetry. The effect of the Gauss-Bonnet term on the stability depends on the spacetime symmetry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源