论文标题

使用毫米波雷达的远程手势识别

Long-Range Gesture Recognition Using Millimeter Wave Radar

论文作者

Liu, Yu, Wang, Yuheng, Liu, Haipeng, Zhou, Anfu, Liu, Jianhua, Yang, Ning

论文摘要

基于毫米的手势识别技术提供了良好的人类计算机互动(HCI)体验。先前的工作着重于近距离识别,但范围延伸的距离不足,即他们无法识别远离相当大的噪声动作一米以上的手势。在本文中,我们设计了一种远程手势识别模型,该模型利用了一种新型的数据处理方法和定制的人工卷积神经网络(CNN)。首先,我们将手势分解为多个反射点,并提取它们的时空特征,这些特征描绘了手势细节。其次,我们设计了一个CNN,以分别学习提取特征的变化模式并输出识别结果。我们通过在商品MMWave雷达上实施彻底评估了我们提出的系统。此外,我们还提供更广泛的评估,以证明在几种现实世界中,所提出的系统是实用的。

Millimeter wave (mmWave) based gesture recognition technology provides a good human computer interaction (HCI) experience. Prior works focus on the close-range gesture recognition, but fall short in range extension, i.e., they are unable to recognize gestures more than one meter away from considerable noise motions. In this paper, we design a long-range gesture recognition model which utilizes a novel data processing method and a customized artificial Convolutional Neural Network (CNN). Firstly, we break down gestures into multiple reflection points and extract their spatial-temporal features which depict gesture details. Secondly, we design a CNN to learn changing patterns of extracted features respectively and output the recognition result. We thoroughly evaluate our proposed system by implementing on a commodity mmWave radar. Besides, we also provide more extensive assessments to demonstrate that the proposed system is practical in several real-world scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源