论文标题
低洼状态在$^{28} $ si中通过非弹性质子和α散射探测的过渡属性
Transition properties of low-lying states in $^{28}$Si probed via inelastic proton and alpha scattering
论文作者
论文摘要
$ 0^+$,$ 1^ - $,$ 2^+$,$ 3^ - $^{28} \ textrm {si} $的激发,通过Proton和$α$ nolastic散射$^{28} \ textrm {si} $。 $^{28} \ textrm {si} $的结构计算是在反对称分子动力学(AMD)框架中总角动量和平等投影后的能量变化进行的。由于AMD的计算,扁平的地面和倾斜带,$ 0^+$和$ 3^ - $激发,以及$ 1^ - $和$ 3^ - $ k^π= 0^ - $ band的$ 3^ - $ state。使用$^{28} \ textrm {si} $的物质和过渡密度,proton的微观耦合 - 通道计算和$α$分散$^{28} \ textrm {si} $。质子 - $^{28} \ textrm {si} $电势是通过折叠墨尔本$ g $ -mtrix $ nn $与AMD密度为$^{28} \ textrm {si} $的AMD密度的相互作用来衍生出的。 $α$ - $^{28} \ textrm {si} $电位是通过折叠核子-Union-$^{28} \ textrm {si} $电势获得$α$密度的。该计算合理地再现了质子和$α$散射的观察到的弹性和非弹性横截面。通过结合质子的反应分析和$α$散射和结构特征,例如过渡强度和形态因素来讨论过渡性能。等相单极和偶极转换聚焦。
$0^+$, $1^-$, $2^+$, and $3^-$ excitations of $^{28}\textrm{Si}$ are investigated via proton and $α$ inelastic scattering off $^{28}\textrm{Si}$. The structure calculation of $^{28}\textrm{Si}$ is performed with the energy variation after total angular momentum and parity projections in the framework of antisymmetrized molecular dynamics (AMD). As a result of the AMD calculation, the oblate ground and prolate bands, $0^+$ and $3^-$ excitations, and the $1^-$ and $3^-$ states of the $K^π=0^-$ band are obtained. Using the matter and transition densities of $^{28}\textrm{Si}$ obtained by AMD, microscopic coupled-channel calculations of proton and $α$ scattering off $^{28}\textrm{Si}$ are performed. The proton-$^{28}\textrm{Si}$ potentials in the reaction calculation are microscopically derived by folding the Melbourne $g$-matrix $NN$ interaction with the AMD densities of $^{28}\textrm{Si}$. The $α$-$^{28}\textrm{Si}$ potentials are obtained by folding the nucleon-$^{28}\textrm{Si}$ potentials with an $α$ density. The calculation reasonably reproduces the observed elastic and inelastic cross sections of proton and $α$ scattering. Transition properties are discussed by combining the reaction analysis of proton and $α$ scattering and structure features such as transition strengths and form factors. The isoscalar monopole and dipole transitions are focused.