论文标题
Kantorovich指数采样运算符近似
On Approximation by Kantorovich Exponential Sampling Operators
论文作者
论文摘要
在本文中,我们分析了Kantorovich类型的指数采样算子及其线性组合。我们根据适当的k功能来得出voronovskaya型定理及其对这些操作员的定量估计。此外,我们通过使用这些操作员的凸型线性组合来提高近似值。随后,我们证明了有关这些线性组合的收敛顺序的估计值。最后,我们给出了一些内核示例以及图形表示。
In this article, we analyse the Kantorovich type exponential sampling operators and its linear combination. We derive the Voronovskaya type theorem and its quantitative estimates for these operators in terms of an appropriate K-functional. Further, we improve the order of approximation by using the convex type linear combinations of these operators. Subsequently, we prove the estimates concerning the order of convergence for these linear combinations. Finally, we give some examples of kernels along with the graphical representations.