论文标题
计算机学习:基于logit的分类器的线性过滤
Machine Unlearning: Linear Filtration for Logit-based Classifiers
论文作者
论文摘要
最近制定的立法授予个人某些权利,以决定使用哪种方式使用他们的个人数据,特别是“被遗忘的权利”。这对机器学习构成了挑战:当个人缩回使用属于模型培训过程的数据的许可时,如何进行?从这个问题中出现了机器学习的领域,可以将其广泛描述为“从模型中删除培训数据”的研究。我们的工作补充了有关分类模型(例如深神经网络)的特定设置的研究方向。作为第一步,我们将线性过滤作为一种直观的,计算有效的消毒方法。我们的实验表明,在对抗性缺失方案的对抗环境中的好处。
Recently enacted legislation grants individuals certain rights to decide in what fashion their personal data may be used, and in particular a "right to be forgotten". This poses a challenge to machine learning: how to proceed when an individual retracts permission to use data which has been part of the training process of a model? From this question emerges the field of machine unlearning, which could be broadly described as the investigation of how to "delete training data from models". Our work complements this direction of research for the specific setting of class-wide deletion requests for classification models (e.g. deep neural networks). As a first step, we propose linear filtration as a intuitive, computationally efficient sanitization method. Our experiments demonstrate benefits in an adversarial setting over naive deletion schemes.