论文标题

用基因表达编程的迷宫堰的排放能力预测

Prediction of Discharge Capacity of Labyrinth Weir with Gene Expression Programming

论文作者

Bonakdari, Hossein, Ebtehaj, Isa, Gharabaghi, Bahram, Sharifi, Ali, Mosavi, Amir

论文摘要

本文提出了一个基于基因表达编程的模型,用于预测三角迷宫堰的排放系数。首先检查了影响放电系数预测的参数,并作为堰顶的顶部的顶部高度比,并作为波峰的高度比率,rest峰的水与通道宽度的长度,在堰的顶部的顶部水长度的水长,弗洛德数字和顶点无尺寸无敏参数。然后使用灵敏度分析来呈现不同的模型,以检查本研究中介绍的每个无量纲参数。此外,通过使用非线性回归(NLR)来提出方程,以与GEP进行比较。使用不同统计指数进行的研究结果表明,GEP比NLR更有能力。这是GEP预测排放系数,平均相对误差约为2.5%,以使预测值在最坏模型中的相对误差小于5%。

This paper proposes a model based on gene expression programming for predicting the discharge coefficient of triangular labyrinth weirs. The parameters influencing discharge coefficient prediction were first examined and presented as crest height ratio to the head over the crest of the weir, a crest length of water to channel width, a crest length of water to the head over the crest of the weir, Froude number and vertex angle dimensionless parameters. Different models were then presented using sensitivity analysis in order to examine each of the dimensionless parameters presented in this study. In addition, an equation was presented through the use of nonlinear regression (NLR) for the purpose of comparison with GEP. The results of the studies conducted by using different statistical indexes indicated that GEP is more capable than NLR. This is to the extent that GEP predicts the discharge coefficient with an average relative error of approximately 2.5% in such a manner that the predicted values have less than 5% relative error in the worst model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源