论文标题
从行星围栏螺旋力进攻的远程限制$ l_e-l_ {μ,τ} $方案
Constraints on long range force from perihelion precession of planets in a gauged $L_e-L_{μ,τ}$ scenario
论文作者
论文摘要
标准模型粒子可以通过三个可能的量规对称为$ {l_e-l_μ} $,$ {l_e-l_τ} $和$ {l_μ-l_τ} $来测量标准模型粒子。其中,$ {l_e-l_μ} $和$ {l_e-l_τ} $可以在太阳和行星之间进行介导,并更改行星轨道的圆锥体进液。众所周知,与$ 1/r^2 $牛顿力量的偏差可以引起行星轨道上的围场进步,例如,在众所周知的爱因斯坦重力案例中,它是根据对汞的周期前进的观察结果进行了测试的。如果规格玻色子的质量为$ m_ {z^{\ prime}} \ leq \ mathcal {o}(10^{ - 19})\ rm {ev} $,我们将考虑太阳和行星之间产生的远距离Yukawa电位。由于此类$ u(1)_ {l_e-l_ {μ,τ}} $ gauge bosons的调解,我们得出了Yukawa型第五力量的围尾螺旋体进步公式。 Yukawa电位的围栏前进与小$ m_ {z^{\ prime}} $的半轨道的半轴平方成正比,与GR不同,在最近的行星中最大。但是,对于$ m_ {z^{\ prime}} $的较高值,发生了对圆锥体进步的指数抑制。我们采用了测量围栏前进的所有行星的观察限制,并在所有行星上获得了仪表玻色子耦合$ g $的上限。火星给出了质量范围$ \ leq 10^{ - 19} \ rm {ev} $的$ g $的强限制,我们获得了排除图。量规玻色子的质量范围可能是模糊暗物质的候选者,因此可以在行星轨道的进液测量中观察到其作用。
The standard model particles can be gauged in an anomaly free way by three possible gauge symmetries namely ${L_e-L_μ}$, ${L_e-L_τ}$, and ${L_μ-L_τ}$. Of these, ${L_e-L_μ}$ and ${L_e-L_τ}$ forces can mediate between the Sun and the planets and change the perihelion precession of planetary orbits. It is well known that a deviation from the $1/r^2$ Newtonian force can give rise to a perihelion advancement in the planetary orbit, for instance, as in the well known case of Einstein's gravity which was tested from the observation of the perihelion advancement of the Mercury. We consider the long range Yukawa potential which arises between the Sun and the planets if the mass of the gauge boson is $M_{Z^{\prime}}\leq \mathcal{O}(10^{-19})\rm {eV}$. We derive the formula of perihelion advancement for Yukawa type fifth force due to the mediation of such $U(1)_{L_e-L_{μ,τ}}$ gauge bosons. The perihelion advancement for Yukawa potential is proportional to the square of the semi major axis of the orbit for small $M_{Z^{\prime}}$, unlike GR, where it is largest for the nearest planet. However for higher values of $M_{Z^{\prime}}$, an exponential suppression of the perihelion advancement occurs. We take the observational limits for all planets for which the perihelion advancement is measured and we obtain the upper bound on the gauge boson coupling $g$ for all the planets. The Mars gives the stronger bound on $g$ for the mass range $\leq 10^{-19}\rm{eV}$ and we obtain the exclusion plot. This mass range of gauge boson can be a possible candidate of fuzzy dark matter whose effect can therefore be observed in the precession measurement of the planetary orbits.