论文标题

甲烷簇的爆炸动力学由38 nm XUV激光脉冲辐射

Explosion Dynamics of Methane Clusters Irradiated by 38 nm XUV Laser Pulses

论文作者

Helal, A., Bruce, S., Quevedo, H., Keto, J., Ditmire, T.

论文摘要

我们已经研究了甲烷簇的爆炸动力学,该甲烷簇被激烈的,飞秒,38 nm(32.6 eV)XUV激光脉冲辐射。通过Wiley-mclaren型飞行时间测量的离子飞行时间光谱仪揭示了不脱节的分子$ \ textrm {ch} _4^+$离子,这些片段由于一个或多个C-H Bonds $(\ textrm的破损而缺少氢原子) \ textrm {and} \ \ textrm {ch}^+)$和重组产品$ \ textrm {ch} _5^+$。同样在飞行时间的痕迹上也可以看到原子和分子氢离子$(\ textrm {h}^+\ textrm {and} \ \ \\ \\ textrm {h} _2^+)$,碳离子,碳离子,以及较大的水合物,例如$ \ \ textrm {c} $ { $ \ textrm {c} _2 \ textrm {h} _3^+$。未检测到未检测到的双重指控父离子$(\ textrm {ch} _4^{2+})$​​。飞行时间的结果表明,总离子和相对离子的产量在很大程度上取决于群集的大小。 The absolute yields of $\textrm{CH}^+_5$ and $\textrm{H}^+$ scale linearly with the yields of the other generated fragments up to a cluster size of $\langle\textrm{N}\rangle=70,000 \ \textrm{molecules}$, then begin to decrease, whereas the yields of the $ \ textrm {ch} _n^+(n = 1-4)$ fragments Plateau在此集群大小。 $ \ textrm {H}^+$的行为可以通过电子重组率来理解,这取决于电子温度和簇平均电荷。此外,$ \ textrm {ch} _5^+$行为是通过$ \ textrm {ch} _4^+$和$ \ textrm {h}^+$通过Electron-Ion重组在扩展的纳米肿块中的电子重组来解释的。

We have studied the explosion dynamics of methane clusters irradiated by intense, femtosecond, 38 nm (32.6 eV) XUV laser pulses. The ion time-of-flight spectrum measured with a Wiley-McLaren-type time-of-flight spectrometer reveals undissociated molecular $\textrm{CH}_4^+$ ions, fragments which are missing hydrogen atoms due to the breakage of one or more C-H bonds $(\textrm{CH}_3^+, \textrm{CH}_2^+ \ \textrm{and}\ \textrm{CH}^+)$ and the recombination product $\textrm{CH}_5^+$. Also visible on the time-of-flight traces are atomic and molecular hydrogen ions $(\textrm{H}^+ \textrm{and}\ \textrm{H}_2^+)$, carbon ions, and larger hydrocarbons such as $\textrm{C}_2 \textrm{H}_2^+$ and $\textrm{C}_2\textrm{H}_3^+$. No doubly-charged parent ions $(\textrm{CH}_4^{2+})$ were detected. The time-of-flight results show that total and relative ion yields depend strongly on cluster size. The absolute yields of $\textrm{CH}^+_5$ and $\textrm{H}^+$ scale linearly with the yields of the other generated fragments up to a cluster size of $\langle\textrm{N}\rangle=70,000 \ \textrm{molecules}$, then begin to decrease, whereas the yields of the $\textrm{CH}_n^+(n=1-4) $ fragments plateau at this cluster size. The behavior of $\textrm{H}^+$ may be understood through the electron recombination rate, which depends on the electron temperature and the cluster average charge. Moreover, the $\textrm{CH}_5^+$ behavior is explained by the depletion of both $\textrm{CH}_4^+$ and $\textrm{H}^+$ via electron-ion recombination in the expanding nanoplasma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源