论文标题
甲烷簇的爆炸动力学由38 nm XUV激光脉冲辐射
Explosion Dynamics of Methane Clusters Irradiated by 38 nm XUV Laser Pulses
论文作者
论文摘要
我们已经研究了甲烷簇的爆炸动力学,该甲烷簇被激烈的,飞秒,38 nm(32.6 eV)XUV激光脉冲辐射。通过Wiley-mclaren型飞行时间测量的离子飞行时间光谱仪揭示了不脱节的分子$ \ textrm {ch} _4^+$离子,这些片段由于一个或多个C-H Bonds $(\ textrm的破损而缺少氢原子) \ textrm {and} \ \ textrm {ch}^+)$和重组产品$ \ textrm {ch} _5^+$。同样在飞行时间的痕迹上也可以看到原子和分子氢离子$(\ textrm {h}^+\ textrm {and} \ \ \\ \\ textrm {h} _2^+)$,碳离子,碳离子,以及较大的水合物,例如$ \ \ textrm {c} $ { $ \ textrm {c} _2 \ textrm {h} _3^+$。未检测到未检测到的双重指控父离子$(\ textrm {ch} _4^{2+})$。飞行时间的结果表明,总离子和相对离子的产量在很大程度上取决于群集的大小。 The absolute yields of $\textrm{CH}^+_5$ and $\textrm{H}^+$ scale linearly with the yields of the other generated fragments up to a cluster size of $\langle\textrm{N}\rangle=70,000 \ \textrm{molecules}$, then begin to decrease, whereas the yields of the $ \ textrm {ch} _n^+(n = 1-4)$ fragments Plateau在此集群大小。 $ \ textrm {H}^+$的行为可以通过电子重组率来理解,这取决于电子温度和簇平均电荷。此外,$ \ textrm {ch} _5^+$行为是通过$ \ textrm {ch} _4^+$和$ \ textrm {h}^+$通过Electron-Ion重组在扩展的纳米肿块中的电子重组来解释的。
We have studied the explosion dynamics of methane clusters irradiated by intense, femtosecond, 38 nm (32.6 eV) XUV laser pulses. The ion time-of-flight spectrum measured with a Wiley-McLaren-type time-of-flight spectrometer reveals undissociated molecular $\textrm{CH}_4^+$ ions, fragments which are missing hydrogen atoms due to the breakage of one or more C-H bonds $(\textrm{CH}_3^+, \textrm{CH}_2^+ \ \textrm{and}\ \textrm{CH}^+)$ and the recombination product $\textrm{CH}_5^+$. Also visible on the time-of-flight traces are atomic and molecular hydrogen ions $(\textrm{H}^+ \textrm{and}\ \textrm{H}_2^+)$, carbon ions, and larger hydrocarbons such as $\textrm{C}_2 \textrm{H}_2^+$ and $\textrm{C}_2\textrm{H}_3^+$. No doubly-charged parent ions $(\textrm{CH}_4^{2+})$ were detected. The time-of-flight results show that total and relative ion yields depend strongly on cluster size. The absolute yields of $\textrm{CH}^+_5$ and $\textrm{H}^+$ scale linearly with the yields of the other generated fragments up to a cluster size of $\langle\textrm{N}\rangle=70,000 \ \textrm{molecules}$, then begin to decrease, whereas the yields of the $\textrm{CH}_n^+(n=1-4) $ fragments plateau at this cluster size. The behavior of $\textrm{H}^+$ may be understood through the electron recombination rate, which depends on the electron temperature and the cluster average charge. Moreover, the $\textrm{CH}_5^+$ behavior is explained by the depletion of both $\textrm{CH}_4^+$ and $\textrm{H}^+$ via electron-ion recombination in the expanding nanoplasma.