论文标题

相关量子状态的概率回流

Probability backflow for correlated quantum states

论文作者

Goussev, Arseni

论文摘要

在其原始配方中,量子回流(QB)是一种干扰效应,它表现为自由粒子状态的负概率转移,该粒子状态由仅具有正数的平面波组成。量子再入(QR)是另一种干扰效应,其中波数据包从其初始限制的空间区域扩展,在没有任何外部力的情况下部分返回到该区域。在这里,我们表明QB和QR都是具有某些位置摩托明相关性的量子状态的更一般经典概率流的特殊情况。我们进一步证明,可以构建相关的量子状态,在“错误”(经典上不可能)方向中传递的概率量超过QB和QR问题中相应概率转移的最小上限,称为Bracken-Melloy常数。

In its original formulation, quantum backflow (QB) is an interference effect that manifests itself as a negative probability transfer for free-particle states comprised of plane waves with only positive momenta. Quantum reentry (QR) is another interference effect in which a wave packet expanding from a spatial region of its initial confinement partially returns to the region in the absence of any external forces. Here we show that both QB and QR are special cases of a more general classically-forbidden probability flow for quantum states with certain position-momentum correlations. We further demonstrate that it is possible to construct correlated quantum states for which the amount of probability transferred in the "wrong" (classically impossible) direction exceeds the least upper bound on the corresponding probability transfer in the QB and QR problems, known as the Bracken-Melloy constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源