论文标题

较高的中央费用和WITT团体

Higher central charges and Witt groups

论文作者

Ng, Siu-Hung, Rowell, Eric C., Wang, Yilong, Zhang, Qing

论文摘要

在本文中,我们介绍了编织融合类别的签名的定义,这些定义被证明是其Witt等效类的不变性。这些签名分配定义了WITT组上的组同态。伪模块类别的较高中央电荷可以用这些签名来表示,这些签名可用于证明Ising模块化类别在Witt组中具有无限的平方根。该结果进一步应用于Super-Witt组上Davydov-Nikshych-Ostrik的猜想:由完全各向异性S-Simple编织融合类别产生的扭转亚组具有无限等级。

In this paper, we introduce the definitions of signatures of braided fusion categories, which are proved to be invariants of their Witt equivalence classes. These signature assignments define group homomorphisms on the Witt group. The higher central charges of pseudounitary modular categories can be expressed in terms of these signatures, which are applied to prove that the Ising modular categories have infinitely many square roots in the Witt group. This result is further applied to prove a conjecture of Davydov-Nikshych-Ostrik on the super-Witt group: the torsion subgroup generated by the completely anisotropic s-simple braided fusion categories has infinite rank.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源