论文标题

表示可变长度和不完整的可穿戴时间序列的代表性学习

Representation Learning on Variable Length and Incomplete Wearable-Sensory Time Series

论文作者

Wu, Xian, Huang, Chao, Roblesgranda, Pablo, Chawla, Nitesh

论文摘要

可穿戴传感器(例如,智能腕带)的普遍性不仅为个人的健康和健康状态提供了前所未有的机会,还可以评估和推断个人属性,包括人口统计和人格属性。但是,从可穿戴设备中捕获的数据(例如心率或步骤数)提出了两个关键挑战:1)时间序列通常具有可变的长度,并且由于不同的数据收集周期(例如,磨损行为因人而异); 2)对压力和环境等外部因素的个体间变异性。本文解决了这些挑战,并使我们更接近个性化见解对个人的潜力,从而从量化的自我转向了合格的自我。具体而言,本文提出的心脏空间通过集成时间序列编码模块和模式聚合网络编码具有可变长度和缺失值的时间序列数据。此外,Heartspace实现了暹罗三角网络,以通过在嵌入学习过程中共同捕获串行间相关性来优化表示形式。对两个不同现实世界数据的经验评估表明,在各种应用程序中,包括人格预测,人口统计学推断和用户身份识别,都提高了高度绩效的基线。

The prevalence of wearable sensors (e.g., smart wristband) is creating unprecedented opportunities to not only inform health and wellness states of individuals, but also assess and infer personal attributes, including demographic and personality attributes. However, the data captured from wearables, such as heart rate or number of steps, present two key challenges: 1) the time series is often of variable-length and incomplete due to different data collection periods (e.g., wearing behavior varies by person); and 2) inter-individual variability to external factors like stress and environment. This paper addresses these challenges and brings us closer to the potential of personalized insights about an individual, taking the leap from quantified self to qualified self. Specifically, HeartSpace proposed in this paper encodes time series data with variable-length and missing values via the integration of a time series encoding module and a pattern aggregation network. Additionally, HeartSpace implements a Siamese-triplet network to optimize representations by jointly capturing intra- and inter-series correlations during the embedding learning process. The empirical evaluation over two different real-world data presents significant performance gains overstate-of-the-art baselines in a variety of applications, including personality prediction, demographics inference, and user identification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源