论文标题
基于迭代能量的投影对正常数据歧管的异常定位
Iterative energy-based projection on a normal data manifold for anomaly localization
论文作者
论文摘要
自动编码器重建被广泛用于无监督异常定位的任务。实际上,预计对正常数据进行训练的自动编码器只能重建数据的正常特征,从而通过图像及其自动编码器重建之间的简单比较来分割图像中的异常像素。但是,在实践中,添加到正常图像的局部缺陷会使整个重建都恶化,从而使这种分割具有挑战性。为了解决该问题,我们在本文中提出了一种新方法,用于通过使用自动编码器的损失函数衍生的能量来使用梯度下降来投射自动编码器学习的正常数据歧管上的异常数据。可以使用正规化术语来增强这种能量,该术语对构成用户定义的最佳投影的构建对象进行建模。通过迭代更新自动编码器的输入,我们绕过了由自动编码器瓶颈引起的高频信息的损失。这允许比经典重建更高质量的图像。我们的方法在各种异常定位数据集上实现了最新的结果。它还在Celeba数据集上的一项介绍任务中显示出有希望的结果。
Autoencoder reconstructions are widely used for the task of unsupervised anomaly localization. Indeed, an autoencoder trained on normal data is expected to only be able to reconstruct normal features of the data, allowing the segmentation of anomalous pixels in an image via a simple comparison between the image and its autoencoder reconstruction. In practice however, local defects added to a normal image can deteriorate the whole reconstruction, making this segmentation challenging. To tackle the issue, we propose in this paper a new approach for projecting anomalous data on a autoencoder-learned normal data manifold, by using gradient descent on an energy derived from the autoencoder's loss function. This energy can be augmented with regularization terms that model priors on what constitutes the user-defined optimal projection. By iteratively updating the input of the autoencoder, we bypass the loss of high-frequency information caused by the autoencoder bottleneck. This allows to produce images of higher quality than classic reconstructions. Our method achieves state-of-the-art results on various anomaly localization datasets. It also shows promising results at an inpainting task on the CelebA dataset.