论文标题

普遍有效的不确定性关系的几何公式

Geometric Formulation of Universally Valid Uncertainty Relation for Error

论文作者

Lee, Jaeha, Tsutsui, Izumi

论文摘要

我们提出了一种新的几何形式公式,这些几何形式对统计性质的任何量子测量有效。由于其简单性和有形性,我们的关系是普遍有效的,并且在实验上可行。尽管我们的关系违反了$ \ hbar/2 $以衡量位置和势头的na {{{{{{{{ ^},但不确定性原则的精神仍然很强。当测量不明智时,我们的关系包括作为推论的小泽关系,并且也无缝地减少了标准的肯纳德·罗伯逊的关系。

We present a new geometric formulation of uncertainty relation valid for any quantum measurements of statistical nature. Owing to its simplicity and tangibility, our relation is universally valid and experimentally viable. Although our relation violates the na{ï}ve non-commutativity bound $\hbar/2$ for the measurement of position and momentum, the spirit of the uncertainty principle still stands strong. Our relation entails, among others, the Ozawa relation as a corollary, and also reduces seamlessly to the standard Kennard-Robertson relation when the measurement is non-informative.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源