论文标题

惯性导航问题引起的矩阵微分方程的符号几何方法

Symplectic Geometric Methods for Matrix Differential Equations Arising from Inertial Navigation Problems

论文作者

Luo, Xin-Long, Sun, Geng

论文摘要

本文探讨了动态系统的一些几何和代数属性,该属性由矩阵微分方程表示,这些方程是由惯性导航问题(例如符号性和正交性)所产生的。此外,它将符号几何算法的适用字段从均匀的汉密尔顿系统扩展到奇数尺寸动力学系统。最后,提出了一些数值实验,并说明了本文的理论结果。

This article explores some geometric and algebraic properties of the dynamical system which is represented by matrix differential equations arising from inertial navigation problems, such as the symplecticity and the orthogonality. Furthermore, it extends the applicable fields of symplectic geometric algorithms from the even dimensional Hamiltonian system to the odd dimensional dynamical system. Finally, some numerical experiments are presented and illustrate the theoretical results of this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源