论文标题

免费的rota-baxter家族代数和免费(TRI)树突状家庭代数

Free Rota-Baxter family algebras and Free (tri)dendriform family algebras

论文作者

Zhang, Yuanyuan, Gao, Xing, Manchon, Dominique

论文摘要

在本文中,我们首先构建了由某些$ x $产生的自由rota-baxter家族代数,就键入的$ x $装修的平面生根树而言。作为一种应用,我们仅根据装饰有角的平面树(不是森林)来获得免费的rota-baxter代数的新结构,这与K. ebrahimi-fard和L. guo通过K. eb. ebrahimi-fard和L. guo的已知结构完全不同。然后,我们将自由树突形(tridendriform)家族代数嵌入重量零的自由rota-baxter家族代数(一个分别)。最后,我们证明了自由rota-baxter家族代数是自由(TRI)齿状族家族代数的通用代数。

In this paper, we first construct the free Rota-Baxter family algebra generated by some set $X$ in terms of typed angularly $X$-decorated planar rooted trees. As an application, we obtain a new construction of the free Rota-Baxter algebra only in terms of angularly decorated planar rooted trees (not forests), which is quite different from the known construction via angularly decorated planar rooted forests by K. Ebrahimi-Fard and L. Guo. We then embed the free dendriform (resp. tridendriform) family algebra into the free Rota-Baxter family algebra of weight zero (resp. one). Finally, we prove that the free Rota-Baxter family algebra is the universal enveloping algebra of the free (tri)dendriform family algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源