论文标题
最小化的运动方法,进入一类标量反应扩散方程
A Minimizing Movement approach to a class of scalar reaction-diffusion equations
论文作者
论文摘要
本文的目的是为一类标量反应扩散方程式引入一种最小化运动方法,该方程是基于其梯度流状结构在有限的非负rad测量空间中构建的,并具有最近引入的Hellinger-Kantorovich距离。此外,Hellinger-Kantorovich距离的超差异性属性在这种情况下将在这种情况下起重要作用,这将在可分离的希尔伯特空间的一般环境中建立。
The purpose of this paper is to introduce a Minimizing Movement approach to a class of scalar reaction-diffusion equations, which is built on their gradient-flow-like structure in the space of finite nonnegative Radon measures, endowed with the recently introduced Hellinger-Kantorovich distance. Moreover, a superdifferentiability property of the Hellinger-Kantorovich distance, which will play an important role in this context, is established in the general setting of a separable Hilbert space.