论文标题

贝叶斯非参数成本效益分析:因果估计和自适应亚组发现

Bayesian Nonparametric Cost-Effectiveness Analyses: Causal Estimation and Adaptive Subgroup Discovery

论文作者

Oganisian, Arman, Mitra, Nandita, Roy, Jason

论文摘要

成本效益分析(CEAS)是卫生经济决策的中心。尽管这些分析有助于政策分析师和经济学家确定覆盖范围,为政策提供信息和指导资源分配,但由于几个原因,它们在统计上具有挑战性。成本和有效性是相关的,并遵循很难参数捕获的复杂关节分布。在许多应用中,有效性(通常以增加生存时间为增加)和累积成本往往是正确的。此外,通常使用具有非随机治疗分配的观测数据进行CEAS。因此,与政策相关的因果估计需要强大的混淆控制。最后,当前的CEA方法无法以原则性的方式解决成本效益的异质性 - 尽管可能存在显着影响异质性,但通常会提出人口平均估计值。在这些挑战的推动下,我们开发了一个非参数贝叶斯模型,用于在审查的存在下用于联合成本生存分布。我们的方法在成本和生存时间的协变效果上使用了一个富含联合的Dirichlet过程,同时在基线生存时间危险中使用了伽马过程。通过贝叶斯非参数G-Compunture程序确定并估算了具有与政策相关的解释的因果CEA估计。最后,我们概述了如何使用富含Dirichlet过程的诱导聚类来适应具有不同成本效益曲线的亚组的存在。我们概述了全后推理的MCMC程序,并通过模拟评估了频繁的特性。我们使用我们的模型评估化学疗法与放射辅助治疗的成本效能,以治疗Seer-Medicare数据库中的子宫内膜癌。

Cost-effectiveness analyses (CEAs) are at the center of health economic decision making. While these analyses help policy analysts and economists determine coverage, inform policy, and guide resource allocation, they are statistically challenging for several reasons. Cost and effectiveness are correlated and follow complex joint distributions which are difficult to capture parametrically. Effectiveness (often measured as increased survival time) and accumulated cost tends to be right-censored in many applications. Moreover, CEAs are often conducted using observational data with non-random treatment assignment. Policy-relevant causal estimation therefore requires robust confounding control. Finally, current CEA methods do not address cost-effectiveness heterogeneity in a principled way - often presenting population-averaged estimates even though significant effect heterogeneity may exist. Motivated by these challenges, we develop a nonparametric Bayesian model for joint cost-survival distributions in the presence of censoring. Our approach utilizes a joint Enriched Dirichlet Process prior on the covariate effects of cost and survival time, while using a Gamma Process prior on the baseline survival time hazard. Causal CEA estimands, with policy-relevant interpretations, are identified and estimated via a Bayesian nonparametric g-computation procedure. Finally, we outline how the induced clustering of the Enriched Dirichlet Process can be used to adaptively detect presence of subgroups with different cost-effectiveness profiles. We outline an MCMC procedure for full posterior inference and evaluate frequentist properties via simulations. We use our model to assess the cost-efficacy of chemotherapy versus radiation adjuvant therapy for treating endometrial cancer in the SEER-Medicare database.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源