论文标题
统一的插值限制了数据歧管上的地质学习
Uniform Interpolation Constrained Geodesic Learning on Data Manifold
论文作者
论文摘要
在本文中,我们提出了一种在数据歧管中学习最小化测量的方法。沿着学习的大地测量,我们的方法可以在两个给定的数据样本之间产生高质量的插值。具体来说,我们使用自动编码器网络将数据样本映射到潜在空间中,并通过插值网络执行插值。我们添加了先前的几何信息,以使我们的自动编码器定为表示形式的凸度,以便对于任何给定的插值方法,生成的插值保留在数据歧管的分布范围内。在学习大地测量之前,应定义适当的riemannianmetric。因此,我们通过欧几里得空间中的规范指标引起了Riemannian指标,该数据歧管被等法地浸入中。基于此定义的Riemannian指标,我们引入了持续的速度损失,并最小化地测量损失,以使插入插座的插座插入式地球上的插座上,以使插座上的地球上的插座正规化。我们提供对模型的理论分析,并以图像翻译为例,以证明我们方法的有效性。
In this paper, we propose a method to learn a minimizing geodesic within a data manifold. Along the learned geodesic, our method can generate high-quality interpolations between two given data samples. Specifically, we use an autoencoder network to map data samples into latent space and perform interpolation via an interpolation network. We add prior geometric information to regularize our autoencoder for the convexity of representations so that for any given interpolation approach, the generated interpolations remain within the distribution of the data manifold. Before the learning of a geodesic, a proper Riemannianmetric should be defined. Therefore, we induce a Riemannian metric by the canonical metric in the Euclidean space which the data manifold is isometrically immersed in. Based on this defined Riemannian metric, we introduce a constant speed loss and a minimizing geodesic loss to regularize the interpolation network to generate uniform interpolation along the learned geodesic on the manifold. We provide a theoretical analysis of our model and use image translation as an example to demonstrate the effectiveness of our method.