论文标题
具有动态神经形态处理器的时空特征的突触整合
Synaptic Integration of Spatiotemporal Features with a Dynamic Neuromorphic Processor
论文作者
论文摘要
尖峰神经元可以通过非线性突触和突触前尖峰模式的非线性突触和树突整合进行时空特征检测。非线性树突和相关的神经形态电路设计的多班门模型可以忠实地模仿这种动态整合过程,但是这些方法也与相对较高的计算成本或电路大小相关。在这里,我们研究了时空尖峰模式的突触整合,并在Dynap-SE神经形态处理器中具有多个动态突触,该突触具有多个动态突触,该过程提供了一种互补的资源效率,尽管具有较低的灵活性,但功能检测方法较低。我们研究了以前提出的兴奋性 - 抑制性动态突触的抑制对,以整合多个输入,并将该概念推广到一个抑制性突触与多个兴奋性突触结合的情况。我们通过测量和分析神经形态神经元电路的膜电位来表征所得延迟的兴奋性突触后电位(EPSP)。我们发现,由于设备不匹配,可以通过选择不同的突触组合来实现与每个神经元订单10毫秒的可变性的生物学相关的EPSP延迟。基于这些结果,我们证明了Dynap-SE中具有动态突触的单点神经元可以选择性地响应具有特定时空结构的突触前尖峰,从而使单个神经元的视觉特征调谐。
Spiking neurons can perform spatiotemporal feature detection by nonlinear synaptic and dendritic integration of presynaptic spike patterns. Multicompartment models of non-linear dendrites and related neuromorphic circuit designs enable faithful imitation of such dynamic integration processes, but these approaches are also associated with a relatively high computing cost or circuit size. Here, we investigate synaptic integration of spatiotemporal spike patterns with multiple dynamic synapses on point-neurons in the DYNAP-SE neuromorphic processor, which offers a complementary resource-efficient, albeit less flexible, approach to feature detection. We investigate how previously proposed excitatory--inhibitory pairs of dynamic synapses can be combined to integrate multiple inputs, and we generalize that concept to a case in which one inhibitory synapse is combined with multiple excitatory synapses. We characterize the resulting delayed excitatory postsynaptic potentials (EPSPs) by measuring and analyzing the membrane potentials of the neuromorphic neuronal circuits. We find that biologically relevant EPSP delays, with variability of order 10 milliseconds per neuron, can be realized in the proposed manner by selecting different synapse combinations, thanks to device mismatch. Based on these results, we demonstrate that a single point-neuron with dynamic synapses in the DYNAP-SE can respond selectively to presynaptic spikes with a particular spatiotemporal structure, which enables, for instance, visual feature tuning of single neurons.