论文标题

通过自适应卷积深入学习,快速生成高保真RGB-D图像

Fast Generation of High Fidelity RGB-D Images by Deep-Learning with Adaptive Convolution

论文作者

Xian, Chuhua, Zhang, Dongjiu, Dai, Chengkai, Wang, Charlie C. L.

论文摘要

使用来自消费者级RGB-D摄像机的原始数据作为输入,我们提出了一种基于深度学习的方法,以有效地生成RGB-D图像,并具有高分辨率的完整信息。为了处理低分辨率的输入图像与缺失区域,我们的深入学习网络中引入了新的自适应卷积操作员,该网络由三个级联模块组成 - 完整模块,改进模块和超级分辨率模块。完成模块基于编码器构造的架构,其中输入RAW RGB-D的特征将通过深神经网络的编码层自动提取。将解码层应用于重建完整的深度图,其次是改进模块,以锐化不同区域的边界。对于超分辨率模块,我们通过多层生成高分辨率的RGB-D图像,用于特征提取和一个用于上采样的图层。我们的结果受益于本文新提出的自适应卷积操作员,我们的结果表现优于现有的基于深度学习的方法,用于RGB-D图像完整和超级分辨率。作为一种端到端方法,可以以每秒21帧的速度有效地生成高保真度RGB-D图像。

Using the raw data from consumer-level RGB-D cameras as input, we propose a deep-learning based approach to efficiently generate RGB-D images with completed information in high resolution. To process the input images in low resolution with missing regions, new operators for adaptive convolution are introduced in our deep-learning network that consists of three cascaded modules -- the completion module, the refinement module and the super-resolution module. The completion module is based on an architecture of encoder-decoder, where the features of input raw RGB-D will be automatically extracted by the encoding layers of a deep neural-network. The decoding layers are applied to reconstruct the completed depth map, which is followed by a refinement module to sharpen the boundary of different regions. For the super-resolution module, we generate RGB-D images in high resolution by multiple layers for feature extraction and a layer for up-sampling. Benefited from the adaptive convolution operators newly proposed in this paper, our results outperform the existing deep-learning based approaches for RGB-D image complete and super-resolution. As an end-to-end approach, high fidelity RGB-D images can be generated efficiently at the rate of around 21 frames per second.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源